日本高清仑乱少妇|日韩无砖专区一中文字目码|亚洲三区无码视频|婷婷六月中文字幕

<blockquote id="qcsuu"></blockquote>
  • <rt id="qcsuu"></rt>
  • <dl id="qcsuu"><cite id="qcsuu"></cite></dl>
  • <cite id="qcsuu"></cite>
  • 我要投稿 投訴建議

    完全平方公式教學(xué)設(shè)計

    時間:2024-11-08 12:01:12 教學(xué)設(shè)計 我要投稿
    • 相關(guān)推薦

    完全平方公式教學(xué)設(shè)計

      作為一位兢兢業(yè)業(yè)的人民教師,常常要根據(jù)教學(xué)需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計是一個系統(tǒng)設(shè)計并實現(xiàn)學(xué)習(xí)目標(biāo)的過程,它遵循學(xué)習(xí)效果最優(yōu)的原則嗎,是課件開發(fā)質(zhì)量高低的關(guān)鍵所在。那么你有了解過教學(xué)設(shè)計嗎?下面是小編為大家整理的完全平方公式教學(xué)設(shè)計,歡迎閱讀與收藏。

    完全平方公式教學(xué)設(shè)計

    完全平方公式教學(xué)設(shè)計1

      一、學(xué)生起點分析

      學(xué)生的知識技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎(chǔ)知識的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。

      學(xué)生活動經(jīng)驗基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力。

      二、教學(xué)任務(wù)分析

      教科書在學(xué)生已經(jīng)學(xué)習(xí)了整式的加法、乘法,以及平方差公式的基礎(chǔ)上,提出了本課的具體學(xué)習(xí)任務(wù):經(jīng)歷探索完全平方公式的過程,并能運用公式進(jìn)行簡單的計算。但這僅僅是這堂課外顯的具體教學(xué)目標(biāo),或者說是一個近期目標(biāo)。整式是初中數(shù)學(xué)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中的一大主干,乘法公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié)。同時,乘法公式的推導(dǎo)是初中數(shù)學(xué)中運用推理方法進(jìn)行代數(shù)式恒等變形的開端,通過乘法公式的學(xué)習(xí)對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處。而且乘法公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運算的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用。為此,本節(jié)課的教學(xué)目標(biāo)是:

      1.經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。

      2.體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進(jìn)行簡單的計算。

      3.了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識。

      4.在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。

      三、教學(xué)設(shè)計分析

      本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):回顧與思考、情境引入、初識完全平方公式、再識完全平方公式、又識完全平方公式、課堂小結(jié)、布置作業(yè)。

      第一環(huán)節(jié)回顧與思考

      活動內(nèi)容:復(fù)習(xí)已學(xué)過的平方差公式

      1.平方差公式:(a+b)(a-b)=a-b;公式的結(jié)構(gòu)特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。

      2.應(yīng)用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

      活動目的:本堂課的學(xué)習(xí)方向仍是引導(dǎo)鼓勵學(xué)生通過已學(xué)習(xí)的知識經(jīng)過個人思考、小1組合作等方式推導(dǎo)出本課新知,進(jìn)一步發(fā)展學(xué)生的符號感和推理能力。而這個過程離不開舊知識的鋪墊,平方差公式的學(xué)習(xí)有很多教學(xué)環(huán)節(jié)和形式與本節(jié)的學(xué)習(xí)是類似的,其中包含的基本知識與基本能力也仍是本節(jié)的精神主旨,因而復(fù)習(xí)很有必要。

      實際教學(xué)效果:在復(fù)習(xí)過程中,學(xué)生能夠順利地回答出平方差公式的內(nèi)容,而對于其結(jié)構(gòu)特點及應(yīng)用時的注意事項,通過學(xué)生之間的相互補(bǔ)充,絕大多數(shù)學(xué)生也得以掌握。在復(fù)習(xí)中既把舊知識得以復(fù)習(xí),同時學(xué)生也會主動的去回顧平方差公式一節(jié)的學(xué)習(xí)過程,從而為本節(jié)課的類比學(xué)習(xí)奠定了基礎(chǔ)。

      第二環(huán)節(jié)情境引入

      活動內(nèi)容:出示幻燈片,提出問題。

      一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

      用不同的形式表示實驗田的'總面積,并進(jìn)行比較。

      活動目的:數(shù)學(xué)源自于生活,通過生活當(dāng)中的一個實際問題,引入本節(jié)課的學(xué)習(xí)。從而在學(xué)生運用舊知計算和比較實驗田的面積當(dāng)中引出完全平方公式。由于實驗田的總面積有多種表示方式,通過對比這些表示方式可以使學(xué)生對于公式有一個直觀的認(rèn)識。同時在古代人們也是通過類似的圖形認(rèn)識了這個公式。在列代數(shù)式解決問題的過程當(dāng)中,通過自主探究和交流學(xué)到了新的知識,學(xué)生的學(xué)習(xí)積極性和主動性得到大大的激發(fā)。

      實際教學(xué)效果:問題提出后,學(xué)生能夠主動地去尋找解決問題的方法。同時問題要求用不同的形式來表示總面積,這就要求學(xué)生從不同的角度來進(jìn)行考慮,從而對于學(xué)生的思維提出了挑戰(zhàn)。不過由于前面列代數(shù)式一部分內(nèi)容的學(xué)習(xí),絕大多數(shù)學(xué)生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結(jié)合的意識。從而在學(xué)生的自主探索過程中引出了完全平方公式,使學(xué)生有了一個直觀認(rèn)識。在整個過程中老師只是在提出問題和引導(dǎo)學(xué)生解決問題,學(xué)生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。

      第三環(huán)節(jié)初識完全平方公式

      活動內(nèi)容:1.通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導(dǎo)學(xué)生利用幾何圖形來驗證兩數(shù)差的完全平方公式。

      3.分析完全平方公式的結(jié)構(gòu)特點,并用語言來描述完全平方公式。

      結(jié)構(gòu)特點:左邊是二項式(兩數(shù)和(差))的平方;

      右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

      語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

      活動目的:第一個活動是讓學(xué)生在上面討論的基礎(chǔ)上,從代數(shù)運算的角度運用多項式的乘法法則,推導(dǎo)出兩數(shù)和的完全平方公式,并且進(jìn)一步推導(dǎo)出兩數(shù)差的完全平方公式。在教學(xué)中學(xué)生有條理的思考和語言表達(dá)能力得以培養(yǎng)。

      第二個活動使學(xué)生再次從幾何的角度來驗證兩數(shù)差的完全平方公式。從而學(xué)生經(jīng)歷了幾何解釋到代數(shù)運算,再到幾何解釋的過程,學(xué)生的數(shù)形結(jié)合意識得以培養(yǎng),并且從不同的角度推導(dǎo)出了公式,并且加以鞏固。

      第三個活動在前面的基礎(chǔ)上,加以總結(jié),使得學(xué)生從形式上初步地認(rèn)識了完全平方公式。實際教學(xué)效果:此環(huán)節(jié)的設(shè)計符合學(xué)生的認(rèn)知水平和認(rèn)知過程。在第一個活動的教學(xué)中2應(yīng)重視學(xué)生對于算理的理解,讓學(xué)生嘗試說出每一步運算的道理,有意識地培養(yǎng)他們有條理的思考和語言表達(dá)能力。在第二個活動中既是對于第二環(huán)節(jié)用幾何解釋驗證兩數(shù)和的完全平方公式的鞏固,同時也是對于學(xué)生數(shù)形結(jié)合意識的一種培養(yǎng),絕大多數(shù)學(xué)生能夠通過交流合作得以掌握。通過幾個活動學(xué)生能夠初步地掌握了完全平方公式,并在推導(dǎo)過程中培養(yǎng)了數(shù)學(xué)的基本能力。

      第四環(huán)節(jié)再識完全平方公式

      活動內(nèi)容:例1用完全平方公式計算:

      (1)(2x3)2;

      (2)(4x+5y)2;

      (3)(mna)22.總結(jié)口訣:首平方,尾平方,兩倍乘積放中央。

      3.鞏固練習(xí)。

     。1)計算:

      11(2y)

      2;(2xyx)2

      ;(n+1)2-n2

     ;(4x+0.5)2

     。(2x2-3y2)225(2)糾錯練習(xí):指出下列各式中的錯誤,并加以改正:

      (1)(2a1)2=2a22a+1;

      (2)(2a+1)2=4a2+1;

      (3)(a1)2=a22a1.活動目的:應(yīng)用完全平方公式進(jìn)行簡單的計算。同時例1三個題目的設(shè)計上有一定的梯度,從而總結(jié)出進(jìn)行簡單計算的一般口訣,并加以鞏固落實。

      實際教學(xué)效果:對照公式,進(jìn)行獨立的簡單計算,體會公式在解題中的應(yīng)用,進(jìn)一步熟悉公式。并通過小組交流,自我檢驗,鞏固反饋?疾靷人的實際運用能力,并及時查漏補(bǔ)缺。在此基礎(chǔ)上由教師總結(jié)出口訣,幫助學(xué)生進(jìn)一步認(rèn)識完全平方公式,并加以鞏固練習(xí)。

      第五環(huán)節(jié)又識完全平方公式

      活動內(nèi)容:1.例2利用完全平方公式計算:

      22(1)(-1-2x);(2)(-2x+1)

      2.進(jìn)一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減;顒幽康模豪2是對課本內(nèi)容的補(bǔ)充,從而使得學(xué)生從更深的一個角度來認(rèn)識完全平方公式,防止解題時中間項的符號出現(xiàn)問題,并能在解題中通過靈活的變形來運用公式,解決問題。并對上面總結(jié)的口訣進(jìn)行進(jìn)一步的完善。

      實際教學(xué)效果:首先放手讓學(xué)生獨立來解決第一個題目,學(xué)生出錯較多,且都集中在中間項的符號上,由此引出有進(jìn)一步認(rèn)識公式的必要,從而教師引導(dǎo)學(xué)生再次觀察題目,仔細(xì)分析題目當(dāng)中誰相當(dāng)于公式當(dāng)中的a與b,從而運用不同的方法和思路,解決問題。在活動中學(xué)生認(rèn)識到了解決問題之前恰當(dāng)選擇公式和正確分析題目的必要性,學(xué)習(xí)的積極性再次被激發(fā),在此基礎(chǔ)上教師把上面總結(jié)的口訣再次完善,幫助學(xué)生突破難點,教師的主導(dǎo)作用得以體現(xiàn)。

      第六環(huán)節(jié)課堂小結(jié)

      活動內(nèi)容:1.完全平方公式和平方差公式不同:

      形式不同.

      222結(jié)果不同:完全平方公式的結(jié)果是三項,即(ab)=a2ab+b;22平方差公式的結(jié)果是兩項,即(a+b)(ab)=ab.2.解題過程中要準(zhǔn)確確定a和b,對照公式原形的兩邊,做到不丟項、

      3不弄錯符號、2ab時不少乘2。

      3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

      活動目的:課堂小結(jié)并不只是課堂知識點的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對于發(fā)言進(jìn)行鼓勵,進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對所學(xué)知識鞏固的目的。

      實際教學(xué)效果:學(xué)生暢所欲言自己的實際收獲,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。

      第七環(huán)節(jié)布置作業(yè)

      1.基礎(chǔ)訓(xùn)練:教材習(xí)題1.13。

      222.拓展練習(xí):(a+b)與(a-b)有怎樣的聯(lián)系?能否用一個等式來表示兩者之間的關(guān)系,并嘗試用圖形來驗證你的結(jié)論?

      四、教學(xué)設(shè)計反思

      1.本節(jié)課學(xué)生的探究活動比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習(xí)而人為的主觀裁斷時間安排,其實公式的探究活動本身既是對學(xué)生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應(yīng)用公式的本領(lǐng)。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂此不疲,更加充分的參與其中。對于這一點,教師一定要轉(zhuǎn)變觀念。

      2.在完全平方公式的探求過程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個單獨的式子,把它孤立地看,而不知道將幾個式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強(qiáng)的觀察力。教師要善于抓住這個契機(jī),適當(dāng)對學(xué)生進(jìn)行學(xué)法指導(dǎo),培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質(zhì)。

      3.對于公式使用的條件既要把握好“度”,又要把握好“方向”。對于公式中的字母取值范圍,不必過分強(qiáng)調(diào)(實際上,這個范圍限定的太小了);而對于公式的特點,則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個類似公式的混淆,給正確解題設(shè)置了障礙。

      4.教無定法,教師應(yīng)根據(jù)本班的實際情況靈活安排教學(xué)步驟,切實把關(guān)注學(xué)生的發(fā)展放在首位來考慮,并依此制定合理而科學(xué)的教學(xué)計劃。如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類比的學(xué)習(xí)方式;而對于基礎(chǔ)較薄弱的班級,則應(yīng)以提高學(xué)習(xí)興趣、教會學(xué)習(xí)、培養(yǎng)成功體驗為主,千萬不可拔苗助長,以防物極必反。

    完全平方公式教學(xué)設(shè)計2

      教學(xué)目標(biāo)

      理解兩個完全平方公式的結(jié)構(gòu),靈活運用完全平方公式進(jìn)行運算。

      在運用完全平方公式的過程中,進(jìn)一步發(fā)展學(xué)生的符號演算的能力,提高運算能力。

      培養(yǎng)學(xué)生在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。

      重點難點

      重點

      完全平方公式的比較和運用

      難點

      完全平方公式的結(jié)構(gòu)特點和靈活運用。

      教學(xué)過程

      一、復(fù)習(xí)導(dǎo)入

      1. 說出完全平方公式的內(nèi)容及作用。

      2. 計算 ,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

      學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“ ”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結(jié)果是一樣的。

      教師歸納:當(dāng)我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準(zhǔn)確;另一方面,當(dāng)我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結(jié)構(gòu)上來看就是一致的了,其結(jié)構(gòu)都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。

      我們學(xué)習(xí)運算,除了要重視結(jié)果,還要重視過程,平時注意訓(xùn)練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。

      二、新課講解

      溫故知新

      與 , 與 相等嗎?為什么?

      學(xué)生討論交流,鼓勵學(xué)生從不同的角度進(jìn)行說理,共同歸納總結(jié)出兩條判斷的'思路:

      1.對原式進(jìn)行運算,利用運算的結(jié)果來判斷;

      2.不對原式進(jìn)行運算,只做適當(dāng)變形后利用整體的方法來判斷。

      思考:與 , 與 相等嗎?為什么?

      利用整體的方法判斷,把 看成一個數(shù),則 是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

      總結(jié)歸納得到: ;

      三、典例剖析

      例1運用完全平方公式計算:

     。1) ; (2)

      鼓勵學(xué)生用多種方法計算,只要言之成理,只要是自己動腦筋發(fā)現(xiàn)的,都要給予肯定,同時還要引導(dǎo)學(xué)生評價哪種算法最簡潔。

      例2計算:

      (1) ; (2) .

      例3 計算:

      (1) ; (2)

      訓(xùn)練學(xué)生熟練地、靈活地運用完全平方公式進(jìn)行運算,進(jìn)一步滲透整體和轉(zhuǎn)化的思想方法。

      四、課堂練習(xí)

      1.運用完全平方公式計算:

     。1) ; (2) ;

     。3) ; (4)

      2.計算:

     。1) ;(2) .

      3. 計算:

     。1) ; (2)

      學(xué)生解答,教師巡視,注意學(xué)生的計算過程是否合理,組織學(xué)生對錯誤進(jìn)行分析和點評。

      五、小結(jié)

      師生共同回顧完全平方公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。

      六、布置作業(yè)

      P50第2(3)、(4),3題

    完全平方公式教學(xué)設(shè)計3

      公式

      教學(xué)目標(biāo)

      1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;

      2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;

      3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。

      教學(xué)建議

      一、教學(xué)重點、難點

      重點:通過具體例子了解公式、應(yīng)用公式.

      難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。

      二、重點、難點分析

      人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認(rèn)識和改造世界帶來很多方便。

      三、知識結(jié)構(gòu)

      本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

      四、教法建議

      1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對公式的靈活應(yīng)用。

      2.在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。

      3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的`,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識過程,有助于提高學(xué)生分析問題、解決問題的能力。

      教學(xué)設(shè)計示例

      公式

      一、教學(xué)目標(biāo)

      (一)知識教學(xué)點

      1.使學(xué)生能利用公式解決簡單的實際問題.

      2.使學(xué)生理解公式與代數(shù)式的關(guān)系.

     。ǘ┠芰τ(xùn)練點

      1.利用數(shù)學(xué)公式解決實際問題的能力.

      2.利用已知的公式推導(dǎo)新公式的能力.

     。ㄈ┑掠凉B透點

      數(shù)學(xué)來源于生產(chǎn)實踐,又反過來服務(wù)于生產(chǎn)實踐.

     。ㄋ模┟烙凉B透點

      數(shù)學(xué)公式是用簡潔的數(shù)學(xué)形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡潔美.

      二、學(xué)法引導(dǎo)

      1.?dāng)?shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點

      2.學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計算

      三、重點、難點、疑點及解決辦法

      1.重點:利用舊公式推導(dǎo)出新的圖形的計算公式.

      2.難點:同重點.

      3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.

      四、課時安排

      1課時

      五、教具學(xué)具準(zhǔn)備

      投影儀,自制膠片。

      六、師生互動活動設(shè)計

      教者投影顯示推導(dǎo)梯形面積計算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.

      七、教學(xué)步驟

      (一)創(chuàng)設(shè)情景,復(fù)習(xí)引入

      師:同學(xué)們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們在小學(xué)里學(xué)過許多公式,請大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計算感到不生疏.

      在學(xué)生說出幾個公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運用公式解決實際問題.

      板書:公式

      師:小學(xué)里學(xué)過哪些面積公式?

      板書:S=ah

     。ǔ鍪就队1)。解釋三角形,梯形面積公式

      【教法說明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。

    完全平方公式教學(xué)設(shè)計4

      教材分析

      1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式

      1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

      2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

      學(xué)情分析

      1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

     、偻愴椀亩x。

     、诤喜⑼愴椃▌t

      ③多項式乘以多項式法則。

      2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

      在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

      教學(xué)目標(biāo)

      (一)教學(xué)目標(biāo):

      1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。

      2、會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算。

      (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

      數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。

      (四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

      (五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

      教學(xué)重點和難點

      重點:能運用完全平方公式進(jìn)行簡單的計算。

      難點:會推導(dǎo)完全平方公式

      教學(xué)過程

      教學(xué)過程設(shè)計如下:

      〈一〉、提出問題

      [引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問題

      1、[學(xué)生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

     。1)原式的特點。

      (2)結(jié)果的項數(shù)特點。

      (3)三項系數(shù)的特點(特別是符號的特點)。

      (4)三項與原多項式中兩個單項式的關(guān)系。

      2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

      兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數(shù)差的.平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運用公式,解決問題

      1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現(xiàn)身手

     、 (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

     、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

     、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學(xué)生小結(jié)]

      你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠(yuǎn)為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      〈五〉、探險之旅

     。1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

     。3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

     。5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

     。7)(2xy2-3x2y) 2=_______________________________

     。8)(2n3-3m3) 2=________________________________

      板書設(shè)計

      完全平方公式

      兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    完全平方公式教學(xué)設(shè)計5

      課題教案:完全平方公式

      學(xué)科:數(shù)學(xué)

      年級:七年級

      1內(nèi)容本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

      1.1以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。使學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

      1.2用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。

      2教學(xué)目標(biāo)

      2.1知識目標(biāo):會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。

      2.2技能目標(biāo):經(jīng)歷由一般的多項式乘法向乘法公式過渡的探究過程,進(jìn)一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的.應(yīng)用打下堅實的基礎(chǔ)。

      2.3情感與態(tài)度目標(biāo):通過觀察、實驗、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性。

      3教學(xué)重點完全平方公式的準(zhǔn)確應(yīng)用。

      4教學(xué)難點掌握公式中字母表達(dá)式的意義及靈活運用公式進(jìn)行計算。

      5教育理念和教學(xué)方式

      5.1教學(xué)是師生交往、積極互動、共同發(fā)展的過程。教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:本節(jié)的教學(xué)過程,要為學(xué)生的動手實踐,自主探索與合作交流提供機(jī)會,搭建平臺;尊重和自己意見不一致的學(xué)生,贊賞每一位學(xué)生的結(jié)論和對自己的超越,尊重學(xué)生的個人感受和獨特見解;幫助學(xué)生發(fā)現(xiàn)他們所學(xué)東西的個人意義和社會價值,通過恰當(dāng)?shù)慕虒W(xué)方式引導(dǎo)學(xué)生學(xué)會自我調(diào)適,自我選擇。

      學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

      5.2采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開教學(xué)。充分利用動手實踐的機(jī)會,盡可能增加教學(xué)過程的趣味性,強(qiáng)調(diào)學(xué)生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學(xué)習(xí)促進(jìn)自主探究。

      6具體教學(xué)過程設(shè)計如下:

      6.1提出問題:[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?

      (x+3)2=,(x-3)2=,

      這些式子的左邊和右邊有什么規(guī)律?再做幾個試一試:

      (2m+3n)2=,(2m-3n)2=

      6.2分析問題

      6.2.1[學(xué)生回答]分組交流、討論 多項式的結(jié)構(gòu)特點

     。1)原式的特點。兩數(shù)和的平方。

      (2)結(jié)果的項數(shù)特點。等于它們平方的和,加上它們乘積的兩倍

     。3)三項系數(shù)的特點(特別是符號的特點)。

     。4)三項與原多項式中兩個單項式的關(guān)系。

      6.2.2[學(xué)生回答]總結(jié)完全平方公式的語言描述:

      兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

      6.2.3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

      (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

      6.3運用公式,解決問題

      6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

      (m+n)2=, (m-n)2=,

      (-m+n)2=, (-m-n)2=,

      6.3.2小試牛刀

     、(x+y)2=;②(-y-x)2=;

      ③(2x+3)2=;④(3a-2)2=;

      6.4學(xué)生小結(jié):你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠(yuǎn)為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      6.5[作業(yè)]P34隨堂練習(xí)P36習(xí)題

    【完全平方公式教學(xué)設(shè)計】相關(guān)文章:

    《平方差公式》教學(xué)設(shè)計優(yōu)秀05-08

    平方差公式教學(xué)設(shè)計(精選11篇)09-27

    《公頃、平方千米 》教學(xué)設(shè)計08-26

    認(rèn)識公頃和平方千米教學(xué)設(shè)計05-11

    完全的近義詞07-11

    完全的造句10-08

    完全變態(tài)06-09

    成功的公式07-26

    完全的同義詞10-30