三角形的內(nèi)角和教學設(shè)計
作為一位兢兢業(yè)業(yè)的人民教師,就難以避免地要準備教學設(shè)計,教學設(shè)計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。怎樣寫教學設(shè)計才更能起到其作用呢?以下是小編為大家整理的三角形的內(nèi)角和教學設(shè)計,歡迎閱讀,希望大家能夠喜歡。
三角形的內(nèi)角和教學設(shè)計 篇1
教學用具 :每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。
教學過程:
一、復習準備
1.三角形按角的不同可以分成哪幾類?
2.一個平角是多少度?1個平角等于幾個直角?
3.如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。
二、教學新課
1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)
2.三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。
3.以小組為單位先畫4個不同類型的三角形,利用手中的'工具分別計算三角形三個內(nèi)角的和各是多少度?
4.指名學生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?
5.大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。
6.剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?
提示學生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。
7.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。
8.三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)
9.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)
10.那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11.老師板書結(jié)論:三角形的內(nèi)角和是180°。
12.一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?
13.出示教材85頁做一做。讓學生試做。
14.指名匯報怎樣列式計算的。兩種方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、鞏固練習
1.88頁第9題
這一題是不是只知道一個角的度數(shù)?另一個角是多少度,從哪看出來的?獨立完成,集體訂正。
直角三角形中的一個銳角還可以怎樣算?
2、88頁第10題
、俚妊切斡惺裁刺攸c?(兩底角相等)
、诹惺接嬎 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88頁第10題
、龠B接長方形、正方形一組對角頂點,把長方形、正方形分成兩個什么圖形?
、谝粋三角形的內(nèi)角和是180°,兩個三角形呢?
一、布置作業(yè)
教學內(nèi)容 三角形的內(nèi)角和
教學要求
1.通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2.能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
3.培養(yǎng)學生動手動腦及分析推理能力。
教學重點 三角形的內(nèi)角和是180°的規(guī)律。
教學難點 使學生理解三角形的內(nèi)角和是180°這一規(guī)律。
三角形的內(nèi)角和教學設(shè)計 篇2
一、了解前測,內(nèi)化于心
前測是指在學校教學過程中,教師在上課前的一段時間內(nèi),通過不同的調(diào)查方式對學生進行相關(guān)知識預(yù)備和相關(guān)方法的預(yù)先測試,然后進行有針對性的設(shè)計教學活動,并提出相應(yīng)的課堂教學策略。開展課堂前測,能夠很好地了解學生的發(fā)展需要和已有經(jīng)驗,了解學生的思維共性和認知差異。
1.前測是教學設(shè)計的學情基礎(chǔ)
對于教師設(shè)計的探究過程,如果學生不需要探究就明白了,那這種設(shè)計就是無效的;如果教師設(shè)計教學環(huán)節(jié)難度很大,學生不能回答不能操作,新舊知識之間沒有建立聯(lián)系,那么這個設(shè)計也是失敗的。那么怎樣的教學設(shè)計才是有效的呢?第一,它必須符合學生的認知需求;第二,它必須重視新舊知識的過渡。要做到這兩點,必須做好前測。
2.前測為教學行為提供數(shù)據(jù)支持
感性讓數(shù)學課堂更具人性化、更精彩生動,理性讓數(shù)學課堂多了一些數(shù)學化。在追求數(shù)學生活化的同時,我們不能忽視數(shù)學本身的東西,應(yīng)讓課堂多一些理性,讓我們的教學行為更有效、更科學化。而前測就是讓數(shù)學課堂科學化的第一步。我們在設(shè)計教案時,總是對學生已有的知識認識不到位。而做了前測,那分析統(tǒng)計所得的數(shù)據(jù),就是我們科學合理設(shè)計教學的正確依據(jù),它能讓我們的教學行為更有效。
二、設(shè)計前測,外化于行
為了在教學中做到心中有學生,教學設(shè)計有依據(jù),需要我們走到學生中去,了解學生的真實認知情況,思維狀態(tài),以細致詳實的前測來加強教學活動設(shè)計的實效性。設(shè)計有效的課堂前測,能夠很好地了解學生的發(fā)展需要和已有經(jīng)驗,這樣才能從學生實際出發(fā),讓學生開展適合自己的學習。
根據(jù)不同的教學內(nèi)容,教師可以設(shè)計不同類型的教學前測,通過前測去了解學生對已有的知識掌握得怎樣?有哪些生活經(jīng)驗?這些已有的知識和生活經(jīng)驗對學生學習新知哪些影響?
1.預(yù)習分析法
教師安排預(yù)習內(nèi)容,設(shè)計預(yù)習作業(yè)。教師通過分析預(yù)習作業(yè),了解學生對新知自學的情況:哪些問題自己能解決,有哪些問題似懂未懂的,還有哪些根本不能解決的問題。從而調(diào)整教學內(nèi)容與方法,確定教學的重點和難點。
如教學五年級的“長方體和正方體的表面積”,五年級的學生有了一定的空間觀念和動手能力,對長方形和正方形也有了一些初步的認識,掌握了他們的基本特征,并且具備了一定的概括推理能力。長方體和正方體的表面積是在學生認識并掌握了長方體、正方體特征的基礎(chǔ)上教學的,也是學生學習幾何知識由平面計算擴展到立體計算的開始,是本單元的重要內(nèi)容。學生們學習長方體和正方體之前已經(jīng)知道了些什么?他們學習的起點在哪里?學生學習這部分的難點到底是什么?學生的空間思維怎么樣?為了更好地了解學生的情況,在教學長方體和正方體的表面積之前,筆者對學生進行了前測。
2.個別談話法
這個方法主要用于后繼教材的教學,問題從舊知和新舊的.連接點處設(shè)計,通過教師與各個類型、各個層次的學生代表的談話了解他們新知生長點的掌握情況,確定怎樣引導學生遷移或類推,從而選擇最為有效的教學方式。
如教學四年級“三角形的內(nèi)角和”本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進行教學的,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,也是進一步學習幾何的基礎(chǔ)。
通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。我在課前了解到,已經(jīng)有不少學生知道了三角形內(nèi)角和是180度。既然不少學生都知道了這個結(jié)論,那是不是不用教學了呢?答案顯然不是的。教師還要通過個別談話法,了解哪些層次的學生知道了這個結(jié)論?如何知道的,怎么證明?為了更好地了解學生的學情,預(yù)設(shè)教學過程,教師通過與學生個別談話進行教學前測。
教學前測如下:
教師在班級里選擇了6名學生,好、中、差各三名,進行訪談。
問題1:關(guān)于三角形你了解哪些知識?
問題2:你還能清楚地記得三角形分類嗎?
問題3:關(guān)于三角形內(nèi)角和你了解什么?
問題4:知道三角形內(nèi)角和的由來嗎?你獲得三角形內(nèi)角和知識的途徑是什么?
問題5:你在生活中見到過哪些三角形?你遇到過哪些生活中需要解決的關(guān)于三角形的實際問題?
三角形的內(nèi)角和教學設(shè)計 篇3
設(shè)計思路
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設(shè)計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學思想,為后繼學習奠定了必要的基礎(chǔ)。
最后讓學生運用結(jié)論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應(yīng)用到間接應(yīng)用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應(yīng)該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學,第3個練習設(shè)計了開放性的練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水平發(fā)展較快的同學。在整個教學設(shè)計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。
教學目標
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學思想。
3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的`興趣。
教材分析
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。
因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
教學重點
讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學準備
多媒體課件、學具。
教學過程
一、激趣引入
。ㄒ唬┱J識三角形內(nèi)角
師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?
生1:三角形是由三條線段圍成的圖形。
生2:三角形有三個角,……
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
(二)設(shè)疑,激發(fā)學生探究新知的心理
師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)
生:能。
師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:只能畫長方形。
師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來研究吧!
。ń沂久埽擅钜胄轮奶骄浚
二、動手操作,探究新知
(一)研究特殊三角形的內(nèi)角和
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)
師:也就是這個三角形各角的度數(shù)。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。
師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?
生1:這兩個三角形的內(nèi)角和都是180°。
生2:這兩個三角形都是直角三角形,并且是特殊的三角形。
。ǘ┭芯恳话闳切蝺(nèi)角和
1、猜一猜。
師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
2、操作、驗證一般三角形內(nèi)角和是180°。
。1)小組合作、進行探究。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內(nèi)角的度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務(wù)。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)
。2)小組匯報結(jié)果。
師:請各小組匯報探究結(jié)果。
生1:180°。
生2:175°。
生3:182°。
(三)繼續(xù)探究
師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。
師:怎樣才能把三個內(nèi)角放在一起呢?
生:把它們剪下來放在一起。
1、用拼合的方法驗證。
師:很好,請用不同的三角形來驗證。
師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務(wù),開始吧。
2、匯報驗證結(jié)果。
師:先驗證銳角三角形,我們得出什么結(jié)論?
生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。
生2:直角三角形的內(nèi)角和也是180°。
生3:鈍角三角形的內(nèi)角和還是180°。
3、課件演示驗證結(jié)果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)
師:我們可以得出一個怎樣的結(jié)論?
生:三角形的內(nèi)角和是180°。
。ń處煱鍟喝切蔚膬(nèi)角和是180°學生齊讀一遍。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
三角形的內(nèi)角和教學設(shè)計 篇4
知識與技能
1、通過小組合作,運用直觀操作的方法,探索并發(fā)現(xiàn)三角形內(nèi)角和等于180。能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單問題。
2、經(jīng)歷親自動手實踐、探索三角形內(nèi)角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數(shù)學思想方法,提高動手操作能力和數(shù)學思考能力。
情感態(tài)度與價值觀
3、使學生在數(shù)學活動中獲得成功的體驗,感受探索數(shù)學規(guī)律的樂趣。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手實踐和歸納中,感受理性的美。
教學重點:
1、探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)和等于180o。
2、已知三角形的兩個角的度數(shù),會求出第三個角的'度數(shù)。
教學難點:
已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。
方法與過程
教法:主動探究法、實驗操作法。
學法:小組合作交流法
教學準備:小黑板、學生、老師準備幾個形狀不同的三角形、量角器。
教學課時:1課時
教學過程
一、預(yù)習檢查
說一說在預(yù)習課中操作的感受,應(yīng)注意哪些問題,三角形的內(nèi)角和等于多少度? 組內(nèi)交流訂正。
二、情景導入呈現(xiàn)目標
故事引入。一天,大三角形對小三角形說:“我的個頭大,所以我的內(nèi)角和一定比你的大!毙∪切魏懿桓市牡卣f:“是這樣的嗎?”揭示課題,出示目標。產(chǎn)生質(zhì)疑,引入新課。
三、探究新知
自主學習
1、活動一、比一比2、活動二、量一量
(1)什么是內(nèi)角?
(2)如何得到一個三角形的內(nèi)角和?
(3)小組活動,每組同學分別畫出大小,形狀不同的若干個三角形。分別量出三個內(nèi)角的度數(shù),并求出它們的和。
。4)填寫小組活動記錄表。發(fā)現(xiàn)大小,形狀不同的每個三角形,三個內(nèi)角的度數(shù)和都接近度。
3、說一說,做一做。
。1)我們把三個角撕下來,再拼在一起,看一看會是怎樣的。
。2)把三個角折疊在一起,,三個角在一條直線上。從而得到三角形三個內(nèi)角和等于()度。
四、當堂訓練(小黑板出示內(nèi)容)
1、三角形的內(nèi)角和是()°,一個等腰三角形,它的一個底角是26°,它的頂角是()。
2、長5厘米,8厘米,()厘米的三根小棒不能圍成一個三角形。
3、三角形具有()性。
4、一個三角形中有一個角是45°,另一個角是它的2倍,第三個角是(),這是一個()三角形。
5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。
6、交流學案第三題!∠泉毩⒆,最后組內(nèi)交流。
五、點撥升華
任意三角形三個角的度數(shù)和等于180度。獨立思索小組交流總結(jié)方法教師點撥。
六、課堂總結(jié)
通過這節(jié)課的學習,你有什么新的收獲或者還有什么疑問?先小組內(nèi)說一說,最后班上交流。
七、拓展提高
媽媽給淘氣買了一個等腰三角形的風箏。它的頂角是40°,它的一底角是多少? 先獨立做,最后組內(nèi)交流。
板書設(shè)計:
三角形的內(nèi)角和
測量三個角的度數(shù)求和:結(jié)論:
教學反思:三角形內(nèi)角和等于180°,對于大多數(shù)同學來說并不是新知識。因為在此之前學生已經(jīng)運用過這一知識。因此,我覺得這一堂課的重點不是讓學生記住這一結(jié)論,也不是怎樣運用它去解結(jié)問題。而是讓學生證明這一結(jié)論,即要讓學生親歷探索過程并在探索中驗證。在教學中,通過豐富的材料讓學生動手操作,通過量、撕拼、折拼等實驗活動,讓學生得到的不僅僅是三角形內(nèi)角和的知識,更重要的是學到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動探索知識的欲望。通過多種實驗進行操作驗證也讓學生明白了只要善于思考,善于動手就能找到解決問題的方法。
當然,在教學中也還有一些不順利的地方,比如一些動手能力差的學生未能及時跟進,對于方法不對的學生未能及時指導和幫助等。但是本堂課采用這樣的方式展開教學是學生喜歡的也是有成效的。
三角形的內(nèi)角和教學設(shè)計 篇5
教學目標:
1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。
2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
3、培養(yǎng)學生合作交流的能力,體驗學習數(shù)學的快樂。
教學過程:
教學設(shè)想
學生活動
備注
一、 創(chuàng)設(shè)情境
1、故事導入
有一天,兩個三角形吵了起來,大三角形說自己的`個頭大,所以內(nèi)角比小三角形大?尚∪切握f別看自己個頭小,但角卻不小。他們爭得不可開交,始終爭論不出結(jié)果。到底誰的內(nèi)角大,誰的內(nèi)角小,請大家?guī)兔ο雮辦法,好嗎?
生:可以用三角板量一量每個內(nèi)角的度數(shù),也就求出三角形內(nèi)角的和,就知道誰大誰小了。
這節(jié)課,我們就來研究三角形的內(nèi)角和。
二、合作交流
量一量
(1)師:同學們,你們的書上有許多三角形,現(xiàn)在就請你們選擇喜歡的三角形,到小組里量出每個角的度數(shù)。再計算出三角形內(nèi)角的和,并填好小組活動記錄表。
(2)各小組匯報記錄結(jié)果,并說說有什么發(fā)現(xiàn)?
生:每個三角形的三個內(nèi)角和接近180度。
師:三角形的內(nèi)角和就是180度。接近180度的是在測量過程中出現(xiàn)了一點小的誤差。
(3)除了用測量的方法能計算出三角形的內(nèi)角和等于180度外,還有許多好的方法呢!
撕一撕
引導學生把一個三角形的三個角撕一下,拼一拼。
折一折
自己試著折一折,也會發(fā)現(xiàn)利用折一折,可以知道三角形內(nèi)角和是180度。
師小結(jié):剛才,同學們用量、撕、折的方法知道了三角形內(nèi)角和是180度,現(xiàn)在你們可以告訴這兩個三角形不要吵了,它們的內(nèi)角是一樣大的。
算一算
這兩個三角形很感謝同學們,你們看,它們的好朋友也來了,它們只知道自己兩個角的度數(shù),你們能幫它們算出另外一個角的度數(shù)嗎?
嘗試:閱讀與思考第1、2題
反饋交流
三、鞏固練習
完成練習與應(yīng)用第1、2題
小組活動開始
小組活動記錄表第()組
三角形的內(nèi)角和教學設(shè)計 篇6
【教學目標】
1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。
2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。
【教學難點】對不同探究方法的指導和學生對規(guī)律的靈活應(yīng)用。
【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。
【教學過程】
一、激趣引入。
1、猜謎語
師:同學們喜歡猜謎語嗎?
生:喜歡。
師:那么,下面老師給大家出個謎語。請聽謎面:
形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?
生:三角形
2、介紹三角形按角的分類
師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類
師分別出示卡片貼于黑板。
3、激發(fā)學生探知心里
師:大家會不會畫三角形。
生:會
師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!
生:試著畫
師:畫出來沒有?
生:沒有
師:畫不出來了,是嗎?
生:是
師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)
二、探究新知。
1、認識三角形的內(nèi)角
看看這三個字,說說看,什么是三角形的內(nèi)角?
生:就是三角形里面的角。
師:三角形有幾個內(nèi)角。
生:3個。
師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)
師:你知道什么是三角形“內(nèi)角和”嗎?
生:三角形里面的角加起來的度數(shù)。
2、研究特殊三角形的內(nèi)角和
師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?
生:算一算:90°+60°+30°=180° 90°+45°+45°=180°
師:180°也是我們學習過的什么角?
生:平角
師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?
3、研究一般三角形的內(nèi)角和
師:猜一猜,其它三角形的內(nèi)角和是多少度呢?
生:
4、操作、驗證
師:同學們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?
要求:
。1)每4人為一個小組。
。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?
。3)驗證的方法不只一種,同學們要多動動腦子。
師:好,開始活動!
師:巡視指導
師:好!請一組匯報測量結(jié)果。
生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。
師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準確。
生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。
師:好!非常好!
師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)
生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。
師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)
現(xiàn)在老師問同學們,三角形的.內(nèi)角和是多少?
生:180度。
師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
三、解決疑問
師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?
生:沒有
師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?
生:兩個直角是180度,沒有第三個角了。
師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?
生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。
師:學會了知識,我們就要懂得去運用。
四、鞏固提高。
1、填空。
。1)三角形的內(nèi)角和是()度。
(2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。
2、求下面各角的度數(shù)。
(1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。
。2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。
3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。
。1)80° 95° 5°( )
(2)60° 70° 90°( )
。3)30° 40° 50°( )
4、紅領(lǐng)巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)
對學生進行思品教育。
5、思考延伸。
根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?
6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°
五、總結(jié)。
三角形的內(nèi)角和教學設(shè)計 篇7
教學目標:
1、通過測量,撕拼,折疊等方法。探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)等于180°。
2、引導學生動手實驗,經(jīng)歷知識的生長過程培養(yǎng)學生的探索意識和動手能力,初步感受數(shù)學研究方法。
3、能運用三角形內(nèi)角和知識解決一些簡單的問題。
教學重點:
探索和發(fā)現(xiàn)“三角形內(nèi)角和是180°”。
教學難點:
驗證“三角形內(nèi)角和是180°,以及對這一知識的靈活運用!
教具準備:
三角形,多媒體課中。
教學過程設(shè)計:
一、創(chuàng)設(shè)情境:故事引入,森林王國里住著平面圖形和立體圖形兩大家族,一天平面圖形的三角形家庭傳出一片吵鬧聲,大三角形與小三角形在爭論:聽大三角形說:“我的內(nèi)角和比你大”,小三角形不服氣,可又不知如何反駁,同學們,你們知道到底誰的內(nèi)角和大嗎?
二、探究新知:
。ㄒ唬、量一量:四人一小組,分別測量本組準備的三角形的內(nèi)角,并求出和。
你們發(fā)現(xiàn)三角形的內(nèi)角和是多少?匯報,提出疑問,三角形的內(nèi)角和是不是剛好等于180°
。ǘ⑵匆黄
引導學生獨立完成,撕下二個角與第三個角拼在在一起,發(fā)現(xiàn)了什么?
引導學生得出:三角形內(nèi)角和等于180°
。ㄈ┱垡徽
引導學生同桌互相幫助完成,發(fā)現(xiàn)三個角形的三個內(nèi)角折在一起是平角。
回答大小三角形的爭論:大三角形與小三角形的內(nèi)角形誰大?并說出理由。
三、鞏固拓展
1、填一填
、僦苯切稳切蔚膬蓚銳角和是()度。
、谥苯侨切蔚囊粋銳角是45°,另一個銳角是()度。
、垅g角三角形的兩上內(nèi)角分別是20°,60°;則第三個角是()
2、火眼金晴
、兮g角三角形的'兩個鈍角和大于90°()。
②直角三角形的兩個銳角之和正好等于90°()。
、厶詺猱嬃艘粋三個角分別是50°,70°,50°的三角形()
、軆蓚銳角是60°的三角形是等邊三角形()
、蓍L方形的內(nèi)角和等于360°()。
3、猜一猜:四邊形的內(nèi)角和是多少度?
五邊形的內(nèi)角和是多少度?
四、小結(jié),今天學習了什么?你有什么收獲?
三角形的內(nèi)角和教學設(shè)計 篇8
一、說教材
北師版八年級下冊第六章《證明一》,是在前面對幾何結(jié)論已經(jīng)有了一定的直觀認識的基礎(chǔ)上編排的,而前幾冊對有關(guān)幾何結(jié)論都曾進行過簡單的說理,本章內(nèi)容則嚴格給出這些結(jié)論的證明,并要求學生掌握證明的一般步驟及書寫表達格式。《三角形內(nèi)角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎(chǔ)。
二、說目標
1.知識目標:掌握“三角形內(nèi)角和定理的證明”及其簡單的應(yīng)用。
2.能力目標培養(yǎng)學生的數(shù)學語言表達、邏輯推理、問題思考、組內(nèi)及組間交流、動手實踐等能力。
3.情感、態(tài)度、價值觀:
在良好的師生關(guān)系下,建立輕松的學習氛圍,使學生體會獲得知識的成就感及與他人合作的樂趣,以增強其數(shù)學學習的自信心。
4.教學重點、難點
重點:三角形的內(nèi)角和定理的證明及其簡單應(yīng)用。
難點:三角形的內(nèi)角和定理的證明方法的討論。
三、說學校及學生現(xiàn)實情況
我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學校有遠程多媒體網(wǎng)絡(luò)教室,為師生提供了良好的學習硬件環(huán)境。我校學生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級四班學生,大多家庭貧苦,所以學習認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。
四、說教法
根據(jù)本節(jié)課教學內(nèi)容特點,我采用啟發(fā)、引導、探索相結(jié)合的教學方法,使學生充分發(fā)揮學習主動性、創(chuàng)造性。
五、說教學設(shè)計
〈一〉、創(chuàng)設(shè)情景,直入主題
一堂新課的引入是教師與學生活動的開始,而一個成功的引入,可使學生破除畏難心理,對知識在短時間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學習一個熟悉的結(jié)論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學生投入新課。
〈二〉、交流對話,引導探索
1、巧妙提問,合理引導
證明思想的`引入時,問:同學們,七年級時如何得到此結(jié)論?(留一定時間讓他們討論、交流、達成共識)學生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發(fā)了學生的學習興趣。接下來學生做題,我巡視。同時讓一學生板演。
2、恰當示范,培養(yǎng)學生正確的書寫能力
在學生做完之后,我與他們一道分析板演同學證明是否合理,并利用多媒體給出正確書寫方法。
3、一題多解,放手讓學生走進自主學習空間
正因為學生的預(yù)習,所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學生思考,繼而熱烈討論,此時,我又走到學生中去,對有困難的學生多加關(guān)注和指導,不放棄任何一個,同時,借此機會增進教師與學困生之間的情誼,為繼續(xù)學習奠定基礎(chǔ)。最后,請有新方法的同學敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。
4、展示歸納,合理演繹
利用多媒體展示三角形內(nèi)角和定理的幾種表達形式,以促其學以致用。
5、反饋練習
用隨堂練習來鞏固學生所學新知,另一方面進一步提高學生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學效果。
〈三〉、課堂小結(jié)
1 采用讓學生感性的談?wù)J識,談收獲。設(shè)計問題:
2(1)、本節(jié)課我們學了什么知識?
。2)、你有什么收獲?
目的是發(fā)揮學生主體意識,培養(yǎng)其語言概括能力。
六、說教學反思
本節(jié)課主要是以嚴謹?shù)倪壿嬜C明方法,驗證三角形內(nèi)角和等于180度。讓學生充分體會有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學習、合作交流是新課程理念,也是我本節(jié)課的設(shè)計意圖。從學生課堂表現(xiàn)可以看出,教學效果良好。而學生的一些出乎意料的做法讓我倍感驚喜!把學生還給課堂,把課堂還給學生,也是我一貫的做法。
三角形的內(nèi)角和教學設(shè)計 篇9
【教學內(nèi)容】
《義務(wù)課程標準實驗教科書數(shù)學》(人教版)小學數(shù)學四年級下冊《三角形》中《三角形的內(nèi)角和》(書第67頁)。
【教材分析】
三角形是日常生活中常見的一種平面圖形,學生已經(jīng)在之前的課中了解了三角的特性和三角形的分類等知識。三角形的內(nèi)角和是三角形的一個重要特征,本節(jié)課的教學是讓學生通過量一量、算一算、拼一拼等活動,理解并掌握三角形的內(nèi)角和是180°,滲透轉(zhuǎn)化思想,為今后學習圖形知識打下基礎(chǔ)。
【學情分析】
學生在本課學習前已經(jīng)認識了三角形的基本特征及分類,并且在四年級上冊已經(jīng)知道了兩塊三角板上每一個角的度數(shù),由于三角形與日常生活聯(lián)系緊密,圖形直觀,所以教學相對而言操作性很強。而學生的數(shù)學知識、能力和思考問題的角度存在一定的差異,因此比較容易出現(xiàn)解決問題的策略多樣化,這樣也對教學的開展提供了很好了研討環(huán)境。
【教學目標】
。1)理解和掌握三角形的內(nèi)角和是180°,能應(yīng)用這一結(jié)論知識解決相關(guān)問題。
。2)經(jīng)歷“猜想-驗證-得出結(jié)論”的學習過程,體驗轉(zhuǎn)化、推理、極限等上學思想方法,培養(yǎng)大膽質(zhì)疑、動手操作、合作交流能力。
。3)讓學生體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。通過教學中的活動體會數(shù)學的轉(zhuǎn)化思想。
【教學重難點】通過操作驗證歸納出三角形的內(nèi)角和是180°。
【教具、學具準備】
教具:教學課件、硬紙片制作的各種三角形、三角尺。
學具:直角三角形、銳角三角形和鈍角三角形各一個,量角器、兩個三角板,固體膠,剪刀。
【教學過程】
一、創(chuàng)設(shè)情境,引出新課
1.師:最近我們一直在研究三角形(課件出示一個大三角形),知道了三角形可以分為哪幾類?
有一天,三角形兄弟們?yōu)榱藘?nèi)角和的事吵了起來,我們一起去看看究竟發(fā)生了什么事?
。ㄕn件)師講故事:三角形哥哥理直氣壯地對弟弟說:“我的內(nèi)角和要比你的大的多.”三角形弟弟不服氣地說:“別看你個頭比我大,但我的內(nèi)角和并不比你的小.”同學們來評評理,誰說的對呢?生:哥哥的對;弟弟說的對……
師:現(xiàn)在出現(xiàn)了不同的意見,有認為三角形哥哥的內(nèi)角和大,也有覺得三角形弟弟說得對的。那到底誰說的對呢?三角形的內(nèi)角和究竟是多少呢?那這節(jié)課我們就一起來研究研究。(出示課題:三角形的內(nèi)角和)
相信通過這節(jié)課的.探究,同學們一定會做出公平、公正的判斷。
2.在探究前,我們有必要先來清楚一下什么是三角形的內(nèi)角?什么又是內(nèi)角和呢?
誰來解釋一下,說說你對內(nèi)角的認識。
信封里有幾個三角形,在其中一個三角形內(nèi)指出三個內(nèi)角,并標上角1、角2、角3。
師:內(nèi)角和就是?三個內(nèi)角的度數(shù)之和
三角形的內(nèi)角和是多少度呢?所有的三角形內(nèi)角和都是180度?
你有什么辦法可以驗證呢?
二、新知探究,動手實踐
(1)量一量
A.師:對呀,用量角器量出每個角的度數(shù)再算一算度數(shù)之和不就知道了。
我們在驗證時,你說至少要研究幾類三角形呢?
生:三類,銳角三角形、直角三角形、鈍角三角形(同意嗎?同意)
B.下面就請小組合作,用量一量的方法來驗證。
要求:1、4人一組,1人負責記錄、,其他3人每人選擇一個三角形;
2、測量每個內(nèi)角的度數(shù),并如實記錄在表格中;
3、仔細計算三角形的內(nèi)角和。
(生動手操作,師巡視。發(fā)現(xiàn)個別組合作比較好,在很短的時間內(nèi)就完成任務(wù))
C.匯報交流
師:哪個小組首先來發(fā)表一下你們小組測量的結(jié)果?并說說你們組發(fā)現(xiàn)了什么?
。糠N三角形叫兩名同學回答,回答后板書)
師:哪些同學測量的是銳角三角形呢?生:60度、60度、60度
師:這個三角形也叫......生:等邊三角形
師:還有不同的銳角三角形嗎?
師:下面我請測量直角三角形的同學也來匯報
師:請量鈍角三角形的朋友也來說一說
師:剛才,有的同學驗證的結(jié)果是三角形的內(nèi)角和是180度,也有的同學驗證的結(jié)果是三角形的內(nèi)角和接近180度,這說明剛才同學們猜想出的三角形內(nèi)角和是180度,還值得我們懷疑,那有沒有更好的方法來驗證三角形的內(nèi)角和肯定是180度。
。2)拼一拼
。ɑ蛟S冷場)鄭老師來個溫馨提示:看到180度使你想到了一個什么特殊的角呢?(平角)
你有什么啟發(fā)?是否也可以把三角形的三個內(nèi)角拼在一起,成為一個平角呢?誰有想法?指名說后課件出示撕拼。同學們也來試試看吧,我們還是4人一組,選擇其中一個三角形,合作撕一撕或剪一剪再拼一拼,貼到長方形白紙上。
展示交流。
生1:我們小組是用剪拼的方法,將銳角三角形的三個角剪下來,拼成一個平角,得到三角形的內(nèi)角和是180度。
生2:我們小組是用撕的方法。我們是用手把3個角撕下來,然后再拼,結(jié)果也能拼成一個平角。
。3)折一折
師:老師最近也在研究三角形內(nèi)角和的驗證方法,這不,給大伙帶來了一個你們沒想到的驗證法,請看大屏幕。(課件出示:三類三角形折的過程。)
師:請同學仔細看,認真思考,呆會把你看到的說出來
生:要給兩條線找到中點,連成虛線,往對邊折。
師:由于時間關(guān)系,請同學們將這個操作過程帶回到課外去實踐。
操作總會有誤差,比如測量度數(shù)時,不一定剛好180°,比如剪拼或折疊時的縫隙,都有可能出現(xiàn)誤差。還有別的方法更能說明三角形的內(nèi)角和是180°嗎?
。4)演繹推理
A.課件演示:我們可以將新知識轉(zhuǎn)化成舊知識來解決問題。
一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。(板書:90°×4=360° 360°÷2=180°)
B.一個直角三角形的內(nèi)角和是180°,那兩個直角三角形背靠背拼成了大三角形,它的內(nèi)角和是幾度呢?(課件演示)為什么還是180度?你解釋一下?
師:是哦,當兩個直角三角形拼在一起,兩個直角就消失掉了,所以這個大三角形的內(nèi)角和仍是180度。
我們通過遮掩過的演繹推理,計算進一步證明了:任意三角形的內(nèi)角和都是180°.
。5)小結(jié):同學們,剛才我們用哪些方法證明了三角形的內(nèi)角和是180度?
測量法、撕拼法、折疊法、演繹推理法
師:是的,三角形的內(nèi)角和都是180度,只是因為我們在測量時會出現(xiàn)一些誤差,所以測量出的結(jié)果不是很準確。剛才同學們用這些多方法證明了無論是什么樣的三角形內(nèi)角和都是1800(板書:是180°)這個結(jié)論是我們集體智慧的結(jié)晶,是我們親自動手實驗反復驗證得來的,現(xiàn)在我們可以用肯定、自豪的語氣說:三角形的內(nèi)角和是180°(引導學生齊讀課題)。
數(shù)學文化帕斯卡12歲發(fā)現(xiàn)三角形內(nèi)角和是180度。
早在300多年前就有一位和你們差不多大小的孩子發(fā)現(xiàn)了這個偉大的結(jié)論,他就是法國偉大的科學家、數(shù)學家帕斯卡。希望在座的各位也好好學習,將來在我們班也產(chǎn)生一些大人物。
三、多樣練習,拓展延伸
1、得出了這個結(jié)論,你會不會利用它很快地說出小動物遮蓋著的角是幾度呢?(口頭指名回答)
師:還記得剛剛上課時那3個吵架的三角形嗎?(課件出示)現(xiàn)在大家可以幫忙解決他們吵架的問題了嗎?
解決了它們的紛爭,我們再來幫個忙,算算各個角的度數(shù)。(出示課件)學生獨立完成,師巡視指導。師:你是怎么想的?
(1)為什么除以3
。2)為什么除以2
。3)可以用90°-40°=50°嗎?
2、超級變變變
這些三角形很頑皮,跟同學們玩起了超級變變變的游戲。一起來看!
A.課件演示等邊三角形越變越大,問:每個角是幾度?你發(fā)現(xiàn)了什么?
B.等腰三角形也迫不及待地跑下來了:我也要變!我也要變!它是怎么變的呢?
這個等腰三角形的頂角是96度,底角是42度。如果頂角是120底角就是?如果頂角繼續(xù)變大,變成150度,底角就是?如果頂角繼續(xù)變大,變成180度,那底角呢?是幾度?
是的,當頂角180度時,這時就不是一個三角形了,這兩遍和這條長邊重合,其實就是一個180度的平角了。課件演示,問:什么變了?什么沒變?
C.直角三角形又是怎么變的呢?它拉來了一個兄弟,兩個背靠背組成了一個新三角形,這個新三角形的內(nèi)角和是幾度呢?
3.拓展訓練(老師還給大家準備了兩道聰明題,當中午的作業(yè)。)
A.家里鏡框上的一塊三角形玻璃碎了(如圖)。聰明的明明,只帶了其中的一塊去玻璃店,就配到了和原來一模一樣的。你知道他帶的是哪一塊嗎?
B.已經(jīng)知道了三角形的內(nèi)角和是180o,你能求出四邊形、五邊形和六邊形的內(nèi)角和嗎?
五、課堂總結(jié)
這節(jié)課學到了什么?什么讓你記憶深刻?
師:哈哈,真是不錯,帶著疑問進課堂,帶著收獲出課堂,咱們合作真是愉快。謝謝!
三角形的內(nèi)角和教學設(shè)計 篇10
學習目標:
1.通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
2.知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。 3.發(fā)展學生動手操作、觀察比較和抽象概括的能力。體驗數(shù)學活動的探索樂趣,體會研究數(shù)學問題的思想方法。
4.能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
教具、學具準備:
課件、學生準備直角三角形、銳角三角形和鈍角三角形各一個,并分別測量出每個內(nèi)角的角度,標在圖中;一副三角板。
教具、學具準備:課件、學生準備直角三角形、銳角三角形和鈍角三角形各一個、一副三角板、磁鐵若干。
教學過程:
一、談話導入
猜謎語:形狀似座山,穩(wěn)定性能堅
三竿首尾連,學問不簡單
(打一幾何圖形)師:最近我們一直在研究關(guān)于三角形的知識,誰能給大家介紹一下?(學生講學過的三角形知識。)
師:就這么簡單的一個三角形我們就得出了那么多的知識,你們
說數(shù)學知識神氣不神奇?
今天我們還要繼續(xù)研究三角形的新知識。
二、創(chuàng)設(shè)情境,引出課題,以疑激思
師:什么是三角形的內(nèi)角?三角形有幾個內(nèi)角?生:就是三角形內(nèi)的三個角。每個三角形都有三個內(nèi)角。師:這個同學說得很好,三條線段在圍成三角形后,在三角形內(nèi)形成了三個角(課件閃爍三個角的弧線),我們把三角形內(nèi)的這三個角,分別叫做三角形的內(nèi)角。
師:有兩個三角形為了一件事正在爭論,我們來幫幫他們。(播放課件)
師:同學們,請你們給評評理:是這樣嗎?生1:我認為是這樣的,因為大三角形大,它的三個內(nèi)角的`和就大。
生2:我不同意,我認為兩個三角形的三個內(nèi)角和的度數(shù)都是一樣的。
生3:當然是大三角形的內(nèi)角和大了。
生4:我同意第二個同學的意見,兩個三角形的內(nèi)角和一樣大。師:現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學認為大三角形的內(nèi)角和大,還有部分同學認為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?這節(jié)課我們就一起來研究這個問題。 (板書課題:
三角形的內(nèi)角和)
三、動手操作,探究問題,以動啟思
1、師拿出兩個三角板,問:它們是什么三角形?生:直角三角形。
師:請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。
(學生們能夠很快求出每塊三角尺的3個角的和都是180°)師:其他三角形的內(nèi)角和也是180°嗎?生A:其他三角形的內(nèi)角和也是180°生B:其他三角形的內(nèi)角和不是180°生C:不一定
2、小組合作探究:
師:同學們能通過動手操作,想辦法來驗證自己的猜想嗎?請同學們先獨立思考想一想,再在小組內(nèi)把你的想法與同伴進行交流,然后選用一種方法進行驗證?凑l最先發(fā)現(xiàn)其中的“奧秘”;看誰能爭取到向大家作“實驗成功的報告”。
(1)、小組合作
,討論驗證方法(2)匯報驗證方法、結(jié)果
師:誰愿意給大家介紹你們小組是用什么方法來驗證的?結(jié)果怎
樣?
方法一:
生A:我們小組是用剪拼的方法,將三角形的三個角撕下來,拼成一個平角,得到三角形的內(nèi)角和是180度。
師:上來展示給大家瞧一瞧。你們看這位同學多細心呀,為了方便、不混淆,在剪之前,他先給3個角標上了符號。
師:現(xiàn)在請同學們看屏幕,我們在電腦里把剛才剪拼的過程重播一遍。你們看成功了,3個角拼成了一個平角,剛才剪拼的是一個銳角三角形,那還有直角三角形、鈍角三角形呢?請同學們進行剪拼,看是否能拼成一個平角。(學生操作)
生:不管什么三角形三個角都能拼成一個平角。
師:剛才這種剪拼的方法可以不用再一個角一個角來量,就能證明三角形的內(nèi)角和是180°,你們覺得這種方法好不好?真會動腦筋,不用工具也行,那我們把掌聲送給剛才這個小組。
方法二:
生B:我們小組是用折的方法,同樣得到三角形的內(nèi)角和是180度。
師:請這位同學折來給大家看看。
生:3個角折成了一個平角。
師:真是個手巧的孩子。他剛才折的是一個銳角三角形,你們小組還有折其他三角形的嗎?(匯報其它三角形折的情況)
師:說得真清楚。
方法三:
學生C:測量角的度數(shù),再加起來。(填表)
師:這位同學測量的是銳角(鈍角)三角形,下面就請同學們另選一個三角形求出它的內(nèi)角和。(匯報:填寫結(jié)果)
問:你們發(fā)現(xiàn)了什么?
小結(jié):通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。
師:三角形的內(nèi)角和就是180度,只是因為我們在測量時會出現(xiàn)一些誤差,所以測量出的結(jié)果不是很準確。
3、小結(jié):
師:剛才同學們用量、拼、折等方法證明了無論是什么樣的三角形內(nèi)角和都是1800,(板書:是180°)現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。
(出示大小不等的三角形判斷內(nèi)角和,判斷前面兩個三角形的對話,得出大三角形的說法是不對的。)
四、自主練習,解決問題:
師:學會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學問題。(課件)
1、第一關(guān):下面每組中哪三個角能圍成一個三角形?(1)70。
60。
30。
90。
(2)42。
54。
58。
80。
2、第二關(guān):廬山真面目:求三角形中一個未知角的度數(shù)。
3、第三關(guān):解決生活實際問題。
(1)爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70°,它的頂角是多少度?
(2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。
4、第四關(guān):變變變(拓展練習)
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)
師:小組的同學討論一下,看誰能找到最佳方法。學生匯報,在圖中畫上虛線,教師課件演示。
五、課堂總結(jié)
帕斯卡法是國著名的數(shù)學家、物理學家、哲學家、科學家,他12歲發(fā)現(xiàn)“任何三角形的三個內(nèi)角和是1800!
帕斯卡小的時候身體不太強壯,而父親又認為數(shù)學對小孩子有害
且很傷腦筋,所以不敢讓他接觸到數(shù)學。在十二歲的時候,偶然看到父親在讀幾何書。他好奇的問幾何學是什么?父親為了不想讓他知道太多,只講幾何學的用處就是教人畫圖時能作出正確又美觀的圖。父親很小心的把自己的數(shù)學書都收藏好,怕被帕斯卡擅自翻動。可是卻引起了巴斯卡的興趣,他根據(jù)父親講的一些簡單的幾何知識,自己獨立研究起來。當他把發(fā)現(xiàn):“任何三角形的三個內(nèi)角和是一百八十度”的結(jié)果告訴他父親時,父親是驚喜交集,竟然哭了起來。父親于是搬出了歐幾里得的“幾何原理”給巴斯卡看。巴斯卡才開始接觸到數(shù)學書籍。
帕斯卡12歲發(fā)現(xiàn)此結(jié)論,我們同學10歲就發(fā)現(xiàn)了。所以只要善于用眼睛觀察,動腦思考,相信未來的數(shù)學家、物理學家、科學家就在你們中間!
三角形的內(nèi)角和教學設(shè)計 篇11
教學內(nèi)容:
北師版小學數(shù)學四年級下冊《探索與發(fā)現(xiàn)(一)—三角形內(nèi)角和》
教材分析:
《三角形內(nèi)角和》是北師大版小學數(shù)學四年級下冊第二單元第三節(jié)的內(nèi)容,是在學生認識了直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形的特點的基礎(chǔ)上進一步探究三角形有關(guān)性質(zhì)中的三個內(nèi)角和的性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一。教材在呈現(xiàn)教學內(nèi)容時,不但重視知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間。三角形的內(nèi)角和的性質(zhì)沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學生通過探索、實驗、討論、交流而獲得,從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學經(jīng)驗,同時發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。
學情分析:
本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進行教學的,學生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,也已具備了一些相應(yīng)的三角形知識,這為感受、理解、抽象“三角形的內(nèi)角和”的性質(zhì),打下了堅實的基礎(chǔ)。同時,通過近四年的數(shù)學學習,學生已初步掌握了一些學習數(shù)學的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。能在小組長帶領(lǐng)下,圍繞數(shù)學問題開展初步的討論活動,能比較清楚的表達自己的意見,認真傾聽他人的發(fā)言,具備了初步的數(shù)學交流能力。
教學目標:
1、讓學生經(jīng)歷“猜想、驗證、歸納、應(yīng)用”等知識形成的`全過程,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于1800,”,并能應(yīng)用規(guī)律解決一些實際問題。
2、在探索過程中培養(yǎng)學生的動手實踐能力、協(xié)作能力及創(chuàng)新意識和探究精神,發(fā)展學生的空間思維能力,同時使學生養(yǎng)成獨立思考的習慣。
3、在活動中,讓學生體驗主動探究數(shù)學規(guī)律的樂趣,體驗學數(shù)學的價值,激發(fā)學生學習數(shù)學的熱情。
教學重點:
讓學生經(jīng)歷“猜想、驗證、歸納、應(yīng)用”等知識形成的全過程,探索并發(fā)現(xiàn)三角形內(nèi)角和等于1800,,并能應(yīng)用規(guī)律解決一些實際問題。
教學難點:
掌握探究方法(猜想-驗證-歸納總結(jié)),學會用“轉(zhuǎn)化”的數(shù)學思想探究三角形內(nèi)角和。
教學用具:
表格、課件。
學具準備:
各種三角形、剪刀、量角器。
一、創(chuàng)設(shè)情境揭示課題。
1、復習
提問:前面我們已經(jīng)學習了三角形的一些知識,誰能介紹一下呢?
生回憶三角形的特征,三角形分類,三角形具有穩(wěn)定性等內(nèi)容。
2、引入
三角形具有穩(wěn)定形,三角形家族是一個團結(jié)的家族,但今天家族內(nèi)部卻發(fā)生了激勵的爭論。
播放課件,提問:它們在爭論什么?
什么是三角形的內(nèi)角和?(板書:內(nèi)角和)
講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。
二、自主探究,合作交流。
。ㄒ唬┨岢鰡栴}:
1、你認為誰說得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?
學生可能會說:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。
。ǘ┨剿髋c發(fā)現(xiàn)
1、初步探索,提出猜想。
。1)量一量
①了解活動要求:(屏幕顯示)
A、在練習本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標注。(測量時要認真,力求準確)
B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。
C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?
。ㄒ龑仡櫥顒右螅
、、小組合作。
③、匯報交流。
你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?
。ㄒ龑W生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在1800,左右。)
。2)提出猜想
剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)
2、動手操作,驗證猜想
這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)
引導:1800,跟我們學過的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?
。1)、小組合作,討論驗證方法。
(2)分組匯報,討論質(zhì)疑
學生可能會出現(xiàn)的方法:
A、撕拼的方法
把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是1800,。
討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?
B、折一折的方法
把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于1800。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?
C提問:還有沒有其它的方法?
3、回顧兩種方法,歸納總結(jié),得出結(jié)論。
。1)課件演示:兩種方法的展示。
。2)引導學生得出結(jié)論。
孩子們,三角形內(nèi)角和到底等于多少度呢?”
學生一定會高興地喊:“1800!
。3)總結(jié)方法,齊讀結(jié)論
我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼!齊讀結(jié)論。(板書:得到結(jié)論)
。4)解釋測量誤差
為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是1800,呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于1800
(三)、回顧問題:
現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內(nèi)角和等于1800,。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數(shù)學書28頁第3題
∠A=180°— 90°—30°
2、練一練:數(shù)學書29頁第一題(生獨立解決)
∠A=180°— 75°— 28°
3、小法官:數(shù)學書29頁第二題
4、拓展創(chuàng)新
A D G
B C E F H R
ABC的內(nèi)角和是()
DEF的內(nèi)角和是()
GHR的內(nèi)角和呢?
小結(jié):三角形的形狀和大小雖然不同,但是三角形的內(nèi)角和都是180度。
四、回顧課堂,滲透數(shù)學方法。
1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學方法。
2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動:探索——多邊形內(nèi)角和
板書設(shè)計:
三角形內(nèi)角和等于1800。
猜想驗證得出結(jié)論應(yīng)用
三角形的內(nèi)角和教學設(shè)計 篇12
教學內(nèi)容:
四年級下冊第78~79頁的例4和“練一練”,練習十二第10~13題。
教學目標:
1、使學生通過觀察、操作、比較、歸納等活動,發(fā)現(xiàn)三角形的內(nèi)角和等于1800,并能應(yīng)用這一知識求三角形中一個未知角的度數(shù)。
2、使學生經(jīng)歷探索和發(fā)現(xiàn)三角形內(nèi)角和等于1800的過程,進一步增強自主探索的意識,積累類比、歸納等活動經(jīng)驗,發(fā)展空間觀念。
3、使學生在參與學習活動的過程中,形成互助合作的學習氛圍,培養(yǎng)大膽猜想、敢于質(zhì)疑、勇于實踐的科學精神。
教學重點:
讓學生經(jīng)歷“三角形內(nèi)角和等于180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學難點:
探究和驗證“三角形內(nèi)角和等于180°”。
教學準備:
學生準備三角板一副、量角器;教師準備多媒體課件、信封里裝三角形紙片若干。
教學過程:
一、創(chuàng)設(shè)情境,產(chǎn)生疑問
1、理解內(nèi)角和含義。
2、故事激趣
提問:三兄弟圍繞什么問題在爭吵?你有什么看法?
二、自主學習,合作探究
1、提出猜想。
。1)計算三角板的內(nèi)角和。
。2)提出猜想。
提問:通過剛才的計算,你能得出什么結(jié)論?有同學懷疑嗎?
指出:“三角形的內(nèi)角和等于1800”只是根據(jù)這兩個特殊三角形得到的一個猜想。
引導:需用更多的三角形驗證。
2、進行驗證。
。1)驗證教師提供的三角形。
測量:任意三角形的內(nèi)角和。
、傩〗M合作:用量角器量出信封里不同三角形的內(nèi)角和。
、诮涣鳒y量結(jié)果。
、厶釂枺焊鶕(jù)測量結(jié)果,你能得出什么結(jié)論?
拼一拼:把一個三角形的三個角拼在一起。
、偎伎迹撼肆,還可以用什么方法驗證呢?
、谕篮献鳎簢L試把三個內(nèi)角拼成一個平角。
③反饋不同的拼法。
④提問:既然三角形的三個內(nèi)角能拼成一個平角,你能得出什么結(jié)論?有懷疑嗎?
解釋誤差問題。
。2)驗證學生自己畫的三角形。
學生任意畫一個三角形,用自己喜歡的方法去驗證。
交流:自己畫的三角形驗證出來內(nèi)角和是1800嗎?有誰驗證
出來不是1800的嗎?
提問:你又能得到什么結(jié)論?還有懷疑嗎?
3、得出結(jié)論。
指出:三角形有無窮多,課上得到的還只是一個猜想。隨著驗證的深入,能越來越確定這個猜想是對的'。
說明:科學家們已經(jīng)經(jīng)過嚴格的論證,證明了所有三角形的內(nèi)角和確實都是1800。
解決爭吵:學生用三角形內(nèi)角和的知識勸解三兄弟。
三、鞏固應(yīng)用,深刻感悟
1、算一算:求三角形中未知角的度數(shù)。
2、拼一拼:用兩塊相同的三角尺拼成一個三角形。
思考:拼成的三角形內(nèi)角和是多少?
3、畫一畫:(1)你能畫出一個有兩個銳角的三角形嗎?
。2)你能畫出一個有兩個直角的三角形嗎?
。3)你能畫出一個有兩個鈍角的三角形嗎?
四、全課總結(jié),課后延伸
1、學生自主總結(jié)一節(jié)課的收獲。
2、介紹帕斯卡。
3、用三角形拼成四邊形、五邊形、六邊形,引發(fā)新的問題。
三角形的內(nèi)角和教學設(shè)計 篇13
教學目標:
1、讓學生通過量、剪、拼、折等活動,主動探究推導出三角形內(nèi)角和是180度,并運用所學知識解決簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透"轉(zhuǎn)化"數(shù)學思想。
3、在學生親自動手和歸納中,使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教學重點:
讓學生經(jīng)歷"三角形內(nèi)角和是180°"這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學難點:
通過小組內(nèi)量一量、折一折、撕一撕等活動,驗證"三角形的內(nèi)角和是180°。"
教師準備:
4組學具、課件
學生準備:
量角器、練習本
教學過程:
一、興趣導入,揭示課題
1、導入:"同學們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?"
。ㄉ鍪救切尾R報各類三角形及特點)
2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來了?快聽聽它們?yōu)槭裁闯称饋砹耍?"哦,它們?yōu)榱巳齻內(nèi)角和的大小而吵起來。"(設(shè)置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
3、我們來幫幫它們好嗎?
4、那么什么叫內(nèi)角?你們明白嗎?誰來說說?來指指。
你能標出三角形的三個角嗎?(生快速標好)
數(shù)學中把三角形的這三個角稱為三角形的內(nèi)角,三個內(nèi)角加起來就叫內(nèi)角和。這節(jié)課我們就來研究一下"三角形的內(nèi)角和"(課件片頭1)
"同學們,用什么方法能知道三角形的內(nèi)角和?"
二、猜想驗證,探究規(guī)律 (動手操作,探究新知)
1.量角求和法證明:
先聽合作要求:拿出準備的一大一小的兩個三角形,現(xiàn)在我們以小組為單位來量一量它們的內(nèi)角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?
。1)學生聽合作要求后分組合作,將各種三角形的內(nèi)角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。
。2)指名匯報各組度量和計算內(nèi)角和的結(jié)果。
(3)觀察:從大家量、算的結(jié)果中,你發(fā)現(xiàn)什么?
歸納:大家算出的三角形內(nèi)角和都等于或接近180°。
(5)思考、討論:
通過測量計算,我們發(fā)現(xiàn)三角形的內(nèi)角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?
大家討論討論。
現(xiàn)在各小組就行動起來吧,看哪些小組的'方法巧妙。看看能得出什么結(jié)論?
看同學們拼得這樣開心,老師也想拼拼,行嗎?演示課件。
看老師最終把三個角拼成了一個什么角?平角。是多少角?
"180°是一個什么角?想一想,怎樣可以把三角形的三個內(nèi)角拼在一起?如果拼成一個180 度的平角就可以驗證這個結(jié)論,對嗎?"(課件3)
現(xiàn)在,我們可驗證三角形的內(nèi)角和是(180度)?
2、那么對任意三角形都是這個結(jié)論?請看大屏幕。
演示銳角三角形折角。 (三個頂點重合后是一個平角,折好后是一個長方形。)
你們想不想去試一試。
1、小組探究活動,師巡視過程中加入探究、指導(如生有困難,師可引導、有可能出現(xiàn)折不到一起的情況,可演示以幫助學生)
2、"你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)
a、驗證直角三角形的內(nèi)角和
折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?
引導生歸納出:直角三角形的內(nèi)角和是180°
折法2 我們還可以得出什么結(jié)論?
引導生歸納出:直角三角形中兩個銳角的和是90°。
(即:不必三個角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)
b、驗證銳角、鈍角三角形的內(nèi)角和。
歸納:銳角、鈍角三角形的內(nèi)角和也是180°。
放手發(fā)動學生獨立完成 ,逐一種類匯報 師給予鼓勵
三、總結(jié)規(guī)律
剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角量、剪、撕,能不能給三角形內(nèi)角下一個結(jié)論呢?(生:三角形的內(nèi)角和是180°)對!不論是哪種三角形,不論大。∥覀兛梢缘贸鲆粋怎樣的結(jié)論?
(三角形的內(nèi)角和是180°。)
。ń處煱鍟喝切蔚膬(nèi)角和是180°學生齊讀一遍。)
為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
。康牟粶省S械牧拷瞧饔姓`差。)
老師的大三角形內(nèi)角和大小三角形內(nèi)角和大呀?(一樣大)首尾呼應(yīng)
四、應(yīng)用新知,知識升華。
。ㄗ寣W生體驗成功的喜悅)
現(xiàn)在,我們已經(jīng)知道了三角形的內(nèi)角和是180°,它又能幫助我們解決那些問題呢?
。ㄕn件5……)
在一個三角形中,有沒有可能有兩個鈍角呢?
(不可能。)
追問:為什么?
(因為兩個銳角和已經(jīng)超過了180°。)
有兩個直角的一個三角形
(因為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。)
問:那有沒有可能有兩個銳角呢?
。ㄓ校谝粋三角形中最少有兩個內(nèi)角是銳角。)
1、 看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)
2、做一做:
在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數(shù)、
3、27頁第3題(數(shù)學信息較為隱藏和生活中的實際問題)
4.思考題、
五、總結(jié)
今天,我們在研究三角形的內(nèi)角和時經(jīng)歷了猜想、驗證、得出結(jié)論的過程,并且運用這一結(jié)論解決了一些問題。人們在進行科學研究中,常常都要經(jīng)歷這樣的過程,同時,它也是一種科學的研究方法。
板書設(shè)計:
三角形內(nèi)角和
量一量 拼一拼 折一折
三角形內(nèi)角和是180°
三角形的內(nèi)角和教學設(shè)計 篇14
一、教學目標
1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實際應(yīng)用。
2.能力目標:培養(yǎng)學生主動探索、動手操作的能力。使學生養(yǎng)成良好的合作習慣。
3.情感目標:讓學生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。并充分體會到學習數(shù)學的快樂。
二、教學過程
。ㄒ唬﹦(chuàng)設(shè)情境,導入新課
1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?
(學生暢所欲言。)
2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!
師口述:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,
3、到底誰說的對呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題:三角形內(nèi)角和)
(二)自主探究,發(fā)現(xiàn)規(guī)律
1、認識什么是三角形的內(nèi)角和。
師:你知道什么是三角形的內(nèi)角和嗎?
通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。
2、探究三角形內(nèi)角和的特點。
、僮寣W生想一想、說一說怎樣才能知道三角形的內(nèi)角和?
學生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)
、谛〗M合作。
通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結(jié)果)讓學生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。
引導學生推測出三角形的內(nèi)角和可能都是180°。
3、驗證推測。
讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。
。ㄐ〗M合作驗證,教師參與其中。)
4、全班交流,共同發(fā)現(xiàn)規(guī)律。
當學生匯報用折拼或剪拼的方法的時候,指名學生上黑板展示結(jié)果。
學生交流、師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)
5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
(三)鞏固練習,拓展應(yīng)用
根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。
1、完成“試一試”
讓學生獨立完成后,集體交流。
2、游戲:選度數(shù),組三角形。
請選出三個角的度數(shù)來組成一個三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。
3、“想想做做”第1題
生獨立完成,集體訂正,并說說解題方法。
4、“想想做做”第2題
提問:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?
5、“想想做做”第3題
生動手折折看,填空。
提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?
6、“想想做做”第5題
生獨立完成,說說不同的解題方法。
7、“想想做做”第6題
學生說說自己的想法。
8、思考題
教師拿一個大三角形,提問學生內(nèi)角和是多少?用剪刀剪成兩個三角形,提問學生內(nèi)角和是多少?為什么?再剪下一個小三角形,提問學生內(nèi)角和是多少?為什么?最后建成一個四邊形,提問學生內(nèi)角和是多少?你能推導
出四邊形的內(nèi)角和公式嗎?
(四)課堂總結(jié)
本節(jié)課我們學習了哪些內(nèi)容?(生自由說),同學們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當中去。
三教后反思:
“三角形的內(nèi)角和”是小學數(shù)學教材第八冊“認識圖形”這一單元中的一個內(nèi)容。通過鉆研教材,研究學情和學法,與同組老師交流,我將本課的教學目標確定為:
1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
本節(jié)教學是在學生在學習“認識三角形”的基礎(chǔ)上進行的,“三角形內(nèi)角和等于180度”這一結(jié)論學生早知曉,但為什么三角形內(nèi)角和會一樣?這也正是本節(jié)課要與學生共同研究的問題。所以我將這節(jié)課教學的重難點設(shè)定為:通過動手操作驗證三角形的內(nèi)角和是180°。教學方法主要采用了實驗法和演示法。學生的折、拼、剪等實踐活動,讓學生找到了自己的驗證方法,使他們體驗了成功,也學會了學習。下面結(jié)合自己的教學,談幾點體會。
。ㄒ唬﹦(chuàng)設(shè)情景,激發(fā)興趣
俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據(jù)教學內(nèi)容和學生實際,精心設(shè)計每一節(jié)課的開頭導語,用別出心裁的導語來激發(fā)學生的.學習興趣,讓學生主動地投入學習。本節(jié)課先創(chuàng)設(shè)畫角質(zhì)疑的情景,當學生畫不出來含有兩個直角的三角形時,學生想說為什么又不知怎么說,學生探究的興趣因此而油然而生。
。ǘ┙o學生空間,讓他們自主探究
“給學生一些權(quán)利,讓他們自己選擇;給學生一個條件,讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔。”我記不清這是誰說過的話,但它給我留下深刻的印象。它正是新課改中學生主體性的表現(xiàn),是以人為本新理念的體現(xiàn)。所以在本節(jié)課中我注重創(chuàng)設(shè)有助于學生自主探究的機會,通過“想辦法驗證三角形內(nèi)角和是180度”這一核心問題,引發(fā)學生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。這樣,學生在經(jīng)歷“再創(chuàng)造”的過程中,完成了對新知識的構(gòu)建和創(chuàng)造。
。ㄈ┮詫W定教,注重教學的有效性
新課表指出:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。要把學生的個人知識、直接經(jīng)驗和現(xiàn)實世界作為數(shù)學教學的重要資源,即以學定教,注重每個教學環(huán)節(jié)的有效性。本課中當我提出“為什么一個三角形中不能有兩個角是直角”時,有學生指出如果有兩個直角,它就拼不成了一個三角形;也有學生說如果有兩個直角,它就趨向于長方形或正方形!盀槭裁磿@樣呢”?學生沉默片刻后,忽然有個學生舉手了:“因為三角形的內(nèi)角和是180度,兩個直角已經(jīng)有180度了,所以不可能有兩個角是直角!边@樣的回答把本來設(shè)計的教學環(huán)節(jié)打亂了,此時我靈機把問題拋給學生,“你們理解他說的話嗎、你怎么知道內(nèi)角和是180度、誰都知道三角形的內(nèi)角和是180度”等,當我看到大多數(shù)的已經(jīng)知道這一知識時,我就把學生直接引向主題“想不想自己研究證明一下三角形的內(nèi)角和是不是180度!奔ぐl(fā)了學生探究的興趣,使學生馬上投入到探究之中。
在練習的時候,由于形式多樣,所以學生的興趣非常高漲,效果很好。通過多邊形內(nèi)角和的思考以及驗證,發(fā)展了學生的空間想象力,使課堂的知識得以延伸。;
【三角形的內(nèi)角和教學設(shè)計】相關(guān)文章:
《三角形內(nèi)角和》教學設(shè)計(精選9篇)09-26
三角形的內(nèi)角和說課稿熱門03-03
《三角形的內(nèi)角和》說課稿范文(通用11篇)12-08
《三角形內(nèi)角和》說課稿范文(通用10篇)10-12
《三角形內(nèi)角和》說課稿范文(通用11篇)03-19
《三角形的特性》教學設(shè)計06-09